图解机器学习 PDF 高清电子书 免费下载 完整版 在线阅读- 高飞网
图解机器学习

图解机器学习

杉山将 许永伟
机器学习
浏览人数:268 在读人数:8
    本书用丰富的图示,从最小二乘法出发,对基于最小二乘法实现的各种机器学习算法进行了详细的介绍。第Ⅰ部分介绍了机器学习领域的概况;第Ⅱ部分和第Ⅲ部分分别介绍了各种有监督的回归算法和分类算法;第Ⅳ部分介绍了各种无监督学习算法;第Ⅴ部分介绍了机器学习领域中的新兴算法。书中大部分算法都有相应的MATLAB程序源代码,可以用来进行简单的测试。    本书适合所有对机器学习有兴趣的初学者阅读。    187张图解轻松入门    提供可执行的Matlab程序代码    覆盖机器学习中最经典、用途最广的算法    专业实用    东京大学教授、机器学习权威专家执笔,浓缩机器学习的关键知识点    图文并茂    187张图示帮助理解,详略得当,为读懂大部头开路。    角度新颖    基于最小二乘法讲解各种有监督学习的回归和分类算法,以及无监督学习算法。    实战导向    配有可执行的MATLAB程序代码,边学习边实践。

目录 -3   
第I部分 绪论 1   
第1章 什么是机器学习 2   
1.1 学习的种类 2   
1.2 机器学习任务的例子 4   
1.3 机器学习的方法 8   
第2章 学习模型 12   
2.1 线性模型 12   
2.2 核模型 15   
2.3 层级模型 17   
第II部分 有监督回归 21   
第3章 最小二乘学习法 22   
3.1 最小二乘学习法 22   
3.2 最小二乘解的性质 25   
3.3 大规模数据的学习算法 27   
第4章带有约束条件的最小二乘法 31   
4.1 部分空间约束的最小二乘学习法 31   
4.2 l2 约束的最小二乘学习法 33   
4.3 模型选择 37   
第5章 稀疏学习 43   
5.1 l1 约束的最小二乘学习法 43   
5.2 l1 约束的最小二乘学习的求解方法 45   
5.3 通过稀疏学习进行特征选择 50   
5.4 lp约束的最小二乘学习法 51   
5.5 l1+l2 约束的最小二乘学习法 52   
第6章 鲁棒学习 55   
6.1 l1 损失最小化学习 56   
6.2 Huber损失最小化学习 58   
6.3 图基损失最小化学习 63   
6.4 l1 约束的Huber损失最小化学习 65   
第III部分 有监督分类 69   
第7章 基于最小二乘法的分类 70   
7.1 最小二乘分类 70   
7.2 0/1 损失和间隔 73   
7.3 多类别的情形 76   
第8章 支持向量机分类 80   
8.1 间隔最大化分类 80   
8.2 支持向量机分类器的求解方法 83   
8.3 稀疏性 86   
8.4 使用核映射的非线性模型 88   
8.5 使用Hinge损失最小化学习来解释 90   
8.6 使用Ramp损失的鲁棒学习 93   
第9章 集成分类 98   
9.1 剪枝分类 98   
9.2 Bagging学习法 101   
9.3 Boosting 学习法 105   
第10章 概率分类法 112   
10.1 Logistic回归 112   
10.2 最小二乘概率分类 116   
第11 章序列数据的分类 121   
11.1 序列数据的模型化 122   
11.2 条件随机场模型的学习 125   
11.3 利用条件随机场模型对标签序列进行预测 128   
第IV部分 无监督学习   
第12章 异常检测 132   
12.1 局部异常因子 132   
12.2 支持向量机异常检测 135   
12.3 基于密度比的异常检测 137   
第13章 无监督降维 143   
13.1 线性降维的原理 144   
13.2 主成分分析 146   
13.3 局部保持投影 148   
13.4 核函数主成分分析 152   
13.5 拉普拉斯特征映射 155   
第14章 聚类 158   
14.1 K均值聚类 158   
14.2 核K均值聚类 160   
14.3 谱聚类 161   
14.4 调整参数的自动选取 163   
第V部分 新兴机器学习算法   
第15章 在线学习 170   
15.1 被动攻击学习 170   
15.2 适应正则化学习 176   
第16章 半监督学习 181   
16.1 灵活应用输入数据的流形构造 182   
16.2 拉普拉斯正则化最小二乘学习的求解方法 183   
16.3 拉普拉斯正则化的解释 186   
第17章 监督降维 188   
17.1 与分类问题相对应的判别分析 188   
17.2 充分降维 195   
第18章 迁移学习 197   
18.1 协变量移位下的迁移学习 197   
18.2 类别平衡变化下的迁移学习 204   
第19章 多任务学习 212   
19.1 使用最小二乘回归的多任务学习 212   
19.2 使用最小二乘概率分类器的多任务学习 215   
19.3 多次维输出函数的学习 216   
第VI部分 结语 221   
第20章 总结与展望 222   
参考文献 225   
看过本书的人还看过